Góc giữa hai đường thẳng trong mặt phẳng Oxy là phần kiến thức toán 10 có nhiều công thức cần nhớ để áp dụng giải bài tập. Trong bài viết sau đây, VUIHOC sẽ cùng các em học sinh ôn tập lý thuyết tổng quan về góc giữa hai đường thẳng, hướng dẫn thành lập công thức và luyện tập với bộ bài tập trắc nghiệm chọn lọc.
Góc giữa hai đường thẳng trong mặt phẳng Oxy là phần kiến thức toán 10 có nhiều công thức cần nhớ để áp dụng giải bài tập. Trong bài viết sau đây, VUIHOC sẽ cùng các em học sinh ôn tập lý thuyết tổng quan về góc giữa hai đường thẳng, hướng dẫn thành lập công thức và luyện tập với bộ bài tập trắc nghiệm chọn lọc.
Ví dụ: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm H của cạnh BC. Biết tam giác SBC là tam giác đều. Tính số đo góc giữa SA và (ABC).
Do H là hình chiếu của S lên mặt phẳng (ABC) nên SH$\perp$ (ABC)
Vậy AH là hình chiếu của SH lên mp(ABC)
Vậy tam giác SAH vuông cân tại H =>
Hãy để hình học không gian không còn là nỗi sợ hãi với giải pháp PAS THPT
Nếu không vuông góc với (P) thì với là hình chiếu của trên (P).
Nắm trọn kiến thức và phương pháp giải mọi dạng bài toán THPT với bộ bí kíp độc quyền của VUIHOC ngay
Gọi vectơ u = (a;b) là vectơ chỉ phương của đường thẳng a.
Gọi = , (P) là vectơ pháp tuyến của (P).
Ví dụ: Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau đôi một. Khẳng định nào sau đây đúng?
A. Góc giữa AC và (BCD) là góc ACB
B. Góc giữa AD và (ABC) là góc ADB
C. Góc giữa AC và (ABD) là góc CAB
D. Góc giữa CD và (ABD) là góc CBD
Để luyện tập thành thạo các bài tập góc giữa hai đường thẳng trong khuôn khổ Toán 10, các em học sinh cùng VUIHOC luyện tập với 20 câu hỏi trắc nghiệm (có đáp án) sau đây. Lưu ý, các em nên tự giải để tìm ra đáp án của riêng mình rồi sau đó so sánh với đáp án gợi ý của VUIHOC nhé!
Bài 1: Xét hai đường thẳng $(a):x+y-10=0$ và đường thẳng $(b):2x+my+99=0$. Tìm giá trị m để góc giữa hai đường thẳng a và b bằng 45 độ.
Bài 2: Cho 2 đường thẳng $(a):y=2x+3$ và $(b):y=-x+6$. Tính giá trị tan của góc giữa hai đường thẳng a và b.
Bài 3: Cho 2 đường thẳng có phương trình sau:
Tính giá trị tan của góc giữa hai đường thẳng $d_1$ và đường thẳng $d_2$?
$(a)\left\{\begin{matrix} x=-1+mt\\
Có bao nhiêu giá trị m thoả mãn góc giữa hai đường thẳng (a) và (b) bằng $60^{\circ}$?
Bài 5: Tìm giá trị côsin của góc giữa hai đường thẳng: $d_1:x+2y-7=0$ và đường thẳng $(d_2):2x-4y+9=0$
Bài 6: Tính giá trị góc giữa 2 đường thẳng sau:
$\Delta _2:\left\{\begin{matrix} x=10-6t\\
Bài 7: Tính giá trị côsin của góc giữa hai đường thẳng sau:
$d_1:\left\{\begin{matrix} x=-10+3t\\
$d_2:\left\{\begin{matrix} x=2+t\\
Bài 8: Góc giữa hai đường thẳng sau gần với số đo nào nhất:
$(a): \frac{x}{-3}+\frac{y}{4}=1$
$(b):\frac{x+11}{6}=\frac{y+11}{-12} $
Bài 9: Cho hai đường thẳng $(a): x - y - 210 = 0$ và $(b): x + my + 47 = 0$. Tính giá trị m thoả mãn góc giữa hai đường thẳng a và b bằng 45 độ.
Bài 10: Cho đường thẳng $(a): y = -x + 30$ và đường thẳng $(b): y = 3x + 600$. Tính giá trị tan của góc tạo bởi hai đường thẳng trên?
Bài 11: Cho hai đường thẳng $(d_1): y = -2x + 80$ và $(d_2): x + y - 10 = 0$. Tính tan của góc giữa hai đường thẳng $d_1$ và $d_2$?
Có bao nhiêu giá trị m thoả mãn góc giữa hai đường thẳng a và b bằng 45 độ?
Bài 13: Tìm côsin của góc giữa 2 đường thẳng: $d_1: x + 2y - 7 = 0$ và $d_2: 2x - 4y + 9 = 0$.
Bài 14: Biết rằng có đúng 2 giá trị tham số k để đường thẳng $d:y=kx$ tạo với đường thẳng $\delta :y=x$ một góc bằng 60 độ. Tổng giá trị của k bằng:
Bài 15: Đường thẳng $\delta $ tạo với đường thẳng d:x+2x-6=0 một góc 45 độ. Tính hệ số góc k của đường thẳng $\delta $.
Bài 16: Trong mặt phẳng với hệ toạ độ Oxy, có bao nhiêu đường thẳng đi qua điểm A(2;0) và tạo với trục hoành một góc bằng 45 độ?
Bài 17: Tính góc tạo bởi 2 đường thẳng: $d_1:2x-y-10=0$ và đường thẳng $d_2:x-3y+9=0$
Bài 18: Tính góc giữa hai đường thẳng: $d_1:x+căn3y=0$ và $d_2:x+10=0$
Bài 19: Tính góc giữa hai đường thẳng:
$d_2:\left\{\begin{matrix} x=2+at\\
Tìm các giá trị của tham số a để $d_1$ và $d_2$ hợp nhau với một góc bằng 45 độ.
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!
Bài viết đã tổng hợp toàn bộ lý thuyết và công thức tính góc giữa hai đường thẳng trong chương trình Toán 10. Hy vọng rằng sau bài viết này, các em học sinh sẽ tự tin vượt qua các dạng bài tập liên quan đến kiến thức góc giữa hai đường thẳng trong hệ toạ độ. Để học nhiều hơn các kiến thức Toán 10 thú vị, các em truy cập vuihoc.vn hoặc đăng ký khoá học với các thầy cô VUIHOC ngay hôm nay nhé!
⭐Bộ Sách Thần Tốc Luyện Đề Toán - Lý - Hóa THPT Có Giải Chi Tiết
Hướng dẫn cách tính góc giữa đường thẳng và mặt phẳng cùng với các dạng bài tập trắc nghiệm dễ hiểu nhất. Các em tham khảo ngay để không bị mất điểm phần bài tập này nhé!
Bài tập tính góc giữa đường thẳng và mặt phẳng là một dạng toán quan trọng trọng chương trình lớp 11, tuy nhiên đây là một dạng bài khá thử thách đối với rất nhiều các bạn học sinh. Để nắm vững kiến thức này, các em học sinh hãy cùng VUIHOC ôn lại vững phần lý thuyết và cách giải các dạng bài tập từ cơ bản đến nâng cao nhé!
Để xác định góc giữa hai đường thẳng a và b, ta lấy điểm O thuộc 1 trong 2 đường thẳng sau đó vẽ 1 đường thẳng đi qua điểm O và song song với 2 đường còn lại.
Nếu vecto u là vecto chỉ phương của đường thẳng a, đồng thời vecto v là vecto chỉ phương của đường thẳng b, kết hợp $(u, v)=\alpha$ thì ta có thể suy ra góc giữa 2 đường thẳng a và b bằng \alpha (thoả mãn $0^{\circ}\leq \alpha \leq 90^{\circ}$.
Để hiểu rõ hơn cách áp dụng công thức giải các bài tập tính góc giữa hai đường thẳng toán 10, các em học sinh cùng VUIHOC theo dõi ví dụ sau đây.
Ví dụ 1: Tính góc giữa hai đường thẳng $(a):3x+y-2=0$ và đường thẳng $(b):2x-y+39=0$
Ví dụ 2: Tính cosin góc giữa hai đường thẳng sau: $\Delta_1 :10x+5y-1=0$ và
$\Delta_2:\left\{\begin{matrix} x=2+t\\
Ví dụ 3: Tính góc giữa hai đường thẳng $(a):\frac{x}{2}+\frac{y}{4}=1$ và (b);(x-1)/2=(y+1)/4
Đăng ký ngay để được các thầy cô ôn tập và xây dựng lộ trình ôn thi THPT môn Toán vững vàng
Câu 1. Cho hình thoi ABCD có tâm O, AC = 2a; BD = 2AC. Lấy điểm S không thuộc (ABCD) sao cho SO (ABCD). Biết tan (SBO) = ½. Tính số đo của góc giữa SC và (ABCD):
Câu 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và (ABC):
Câu 3. Cho hình chóp S.ABC có SA\perp (ABC) và tam giác ABC không vuông. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC. Số đo góc tạo bởi SC và (BHK) là:
Câu 4. Cho hình chóp S. ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với mp (ABCD). Gọi là góc giữa BD và mp (SAD). Chọn khẳng định đúng trong các khẳng định sau?
Câu 5. Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a, (ABCD), SA = . Gọi là góc giữa SC và mp (ABCD). Chọn khẳng định đúng trong các khẳng định sau?
Câu 6. Cho hình lập phương ABCD. A’B’C’D’ cạnh a. Gọi là góc giữa AC và mp ( A’BCD’). Chọn khẳng định đúng trong các khẳng định sau?
Câu 7. Cho hình chóp S.ABCD đáy ABCD là hình vuông cạnh a, SA = 2a và SA vuông góc với mặt phẳng đáy (ABCD), góc giữa cạnh SC và mặt phẳng (ABCD) là?
Câu 8. Cho hình chóp SABCD đáy ABCD là hình chữ nhật, AB=a, AD=2a, cạnh bên SA vuông góc với đáy. Góc giữa SC và đáy ABCD bằng 60o. Tính độ dài SA?
Câu 9. Cho hình chóp SABCD có đáy ABCD là hình thang vuông tại A, B biết AB=BC=a, AD=2a, SA vuông góc với mặt phẳng đáy (ABCD). Tính độ dài SA để góc giữa SC và mặt phẳng (ABCD) bằng 45o.
Câu 10. Cho hình chóp SABC có SA = a, SA vuông góc với đáy, ABC là tam giác vuông cân tại B, góc , AC = 2a. Tính góc giữa SC và mặt phẳng (SAB).
Trên đây là toàn bộ kiến thức cơ bản và tổng hợp đầy đủ về góc giữa đường thẳng và mặt phẳng trong hình học không gian. Hy vọng rằng sau bài viết này, các em học sinh có thể giải các bài tập từ cơ bản đến nâng cao thật thành thục. Để học và ôn tập nhiều hơn những phần kiến thức và công thức toán hình 12 phục vụ ôn thi THPT QG, truy cập Vuihoc.vn và đăng ký khóa học ngay từ hôm nay nhé!
PAS VUIHOC – GIẢI PHÁP ÔN LUYỆN CÁ NHÂN HÓA
Khóa học online ĐẦU TIÊN VÀ DUY NHẤT:
⭐ Xây dựng lộ trình học từ mất gốc đến 27+
⭐ Chọn thầy cô, lớp, môn học theo sở thích
⭐ Tương tác trực tiếp hai chiều cùng thầy cô
⭐ Học đi học lại đến khi nào hiểu bài thì thôi
⭐ Rèn tips tricks giúp tăng tốc thời gian làm đề
⭐ Tặng full bộ tài liệu độc quyền trong quá trình học tập
Đăng ký học thử miễn phí ngay!!